

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Алфавитный указатель

tgalice

This is yet another common Python wrapper for Telegram bots* and Alice skills.

Currently, it provides:

	An (almost) unified interface between your bot and Telegram or Alice: DialogConnector

	A number of simple dialogue constructors: BaseDialogManager and its flavors

	A wrapper for storing dialogue state: BaseStorage and its flavors

This package [https://pypi.org/project/tgalice/] may be installed with

pip install tgalice

The three components of tgalice may be combined as follows:

import tgalice
connector = tgalice.dialog_connector.DialogConnector(
 dialog_manager=tgalice.dialog_manager.BaseDialogManager(),
 storage=tgalice.session_storage.BaseStorage()
)

Now you can plug both Alice and Telegram into the connector. In the example below, they are served with Flask.

@app.route("/" + ALICE_URL, methods=['POST'])
def alice_response():
 response = connector.respond(request.json, source='alice')
 return json.dumps(response, ensure_ascii=False, indent=2)

@bot.message_handler(func=lambda message: True)
def telegram_response(message):
 response = connector.respond(message, source='telegram')
 bot.reply_to(message, **response)

To reduce the amount of boilerplate code even more, you can use the FlaskServer class,
which configures both Alice and Telegram for you, and can also run in pure command line mode
(e.g. if you want to test your bot without internet connection).

server = tgalice.flask_server.FlaskServer(connector=connector)
server.parse_args_and_run()

The examples [https://github.com/avidale/tgalice/tree/master/example] directory contains more detailed examples
of how to create dialogs and serve the bot.

* The Telegram wrapper is based on the pyTelegramBotAPI [https://github.com/eternnoir/pyTelegramBotAPI]
package.

 This example shows how to actually build a bot that can be deployed e.g. on Heroku.

About the contents

	faq.py shows how to create a simple Q&A bot with a text-based config faq.yaml.

	state.py shows how you can create a custom dialog manager and track dialogue state (number of messages).

	form.py shows how to configure a sequence of questions.

The file requirements.txt describes the packages required to run the bot
(only tgalice and flask in this example).

The file Procfile is needed only for Heroku: it shows what to run when your bot is deployed.

Deploy in command line mode

To run the bot locally (in the command line mode, without Internet connection) you need no specific setup,
except installing the requirements (pip install -r requirements.txt, if you don“t have them yet).
The argument --cli enables command line mode.

For example, to run the example faq.py in the command line mode, you need to type in the command line (Windows)

cd <the directory with the examples>
python faq.py --cli

Local deploy for Telegram

To run the bot in the polling mode (for Telegram only), you need to set an environment variable TOKEN
to the token of your Telegram bot (given to you by t.me/botfather when you create a bot).

For example, to run the example faq.py locally for Telegram, you need to type in the command line (Windows)

cd <the directory with the examples>
set TOKEN=<your telegram token from @botfather>
python faq.py --poll

(if you are not on Windows, you probably already know what to do).

Web deploy

To run the bot on the server (for both Alice and Telegram), you need to set the token
and the environment variable BASE_URL
to the address of your application (such as https://my-cool-app.herokuapp.com/).
After you deploy it, you can use the url <BASE_URL>/alice/ as a webhook for an
Alice skill [https://tech.yandex.ru/dialogs/alice/].

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

